Learning, compression, and leakage: Minimizing classification error via meta-universal compression principles

Abstract

Learning and compression are driven by the common aim of identifying and exploiting statistical regularities in data, which opens the door for fertile collaboration between these areas. A promising group of compression techniques for learning scenarios is normalised maximum likelihood (NML) coding, which provides strong guarantees for compression of small datasets-in contrast with more popular estimators whose guarantees hold only in the asymptotic limit. Here we put forward a novel NML-based decision strategy for supervised classification problems, and show that it attains heuristic PAC learning when applied to a wide variety of models. Furthermore, we show that the misclassification rate of our method is upper bounded by the maximal leakage, a recently proposed metric to quantify the potential of data leakage in privacy-sensitive scenarios.

Publication
Information Theory Workshop
Pedro Mediano
Pedro Mediano
Coffee-powered beast-machine

Computational neuroscientist interested in synergy, information theory, and complexity.

Related