MULTI-TARGET INFORMATION DECOMPOSITION

AND APPLICATIONS TO INTEGRATED INFORMATION THEORY

Pedro A.M. Mediano plogp@pm.me

Imperial College London

ACKNOWLEDGEMENTS

Fernando Rosas

Daniel Bor

Adam Barrett

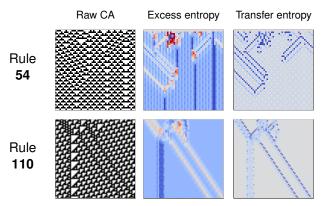
Thanks to:

- Andrea Luppi
- Anil Seth
- Robin Carhart-Harris

INTRODUCTION

INFORMATION DYNAMICS

► **Goal**: Study how information is *stored, transferred, and modified* in a multivariate complex system.



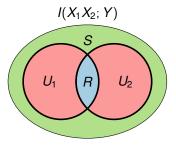
Storage and transfer are kinda sorted - what about modification?

PARTIAL INFORMATION DECOMPOSITION

Enter Partial Information Decomposition (PID).

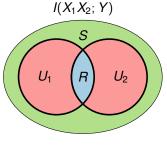
In PID, mutual information is split into:

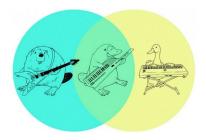
- Redundancy
- Unique information
- Synergy

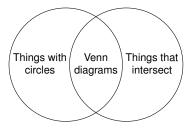


Synergy can help us understand information modification.

INTERLUDE: VENN DIAGRAMS

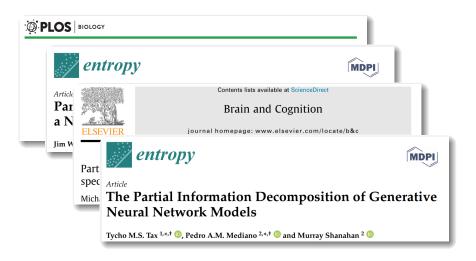






PARTIAL INFORMATION DECOMPOSITION

SUCCESS STORIES

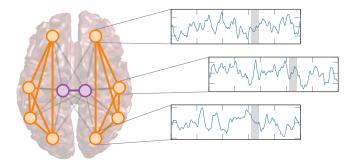


WHEN PID IS NOT ENOUGH

MULTIVARIATE COMPLEX SYSTEMS

► We need to designate one variable as *target* and others as *sources*.

In multivariate systems, there is no natural source/target division.



WHEN PID IS NOT ENOUGH

CONSCIOUSNESS NEUROSCIENCE

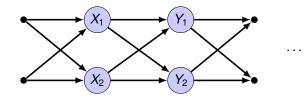
 Consciousness is an endogenous process, especially during REM sleep and dreams.



Goal: describe information flows from the system's intrinsic perspective.

INFORMATION AND DYNAMICAL SYSTEMS

We care about multivariate systems evolving *jointly* over time.



. . .

Problem: PID cannot deal with multiple targets!

INFORMATION DECOMPOSITION

Can we extend PID to multivariate time series?

Yes! With Integrated Infomation Decomposition, Φ ID.

$$l(oldsymbol{X};oldsymbol{Y}) = \sum_{oldsymbol{lpha},oldsymbol{eta}\in\mathcal{A}} l_{\partial}^{oldsymbol{lpha}
ightarrowoldsymbol{eta}}$$

Beyond integrated information: A taxonomy of information dynamics phenomena

Pedro A.M. Mediano,¹ Fernando Rosas,^{2,3,4} Robin L. Carhart-Harris,² Anil K. Seth,⁵ and Adam B. Barrett^{5,6}
 ¹Department of Computing, Imperial College London, London SW7 2RL²
 ²Center for Psychedic Research, Department of Medicine, Imperial College London, London SW7 2DD
 ³Data Science Institute, Imperial College London, London SW7 2AZ
 ⁴Center for Complexity Science and Department of Mathematics, Imperial College London, London SW7 2AZ
 ⁵Sackler Center for Consciousness Science, Department of Informatics, University of Sussex, Brighton BN1 9RH
 ⁶The Data Intensive Science Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK (Dated: September 6, 2019)

TAKE-HOME MESSAGE

- New extension of PID to multi-target setting, applicable to dynamical systems.
- ✓ Solves known problems within Integrated Information Theory (IIT).
- ? New opportunities and challenges for PID research.

THIS TALK

Part I

Multi-target PID and integrated information decomposition (Φ ID)

 $\frac{PART II}{\Phi ID and Integrated Information Theory (IIT-2.0)}$

Part III

A formal theory of causal emergence based on Φ ID

Main track O14

INFORMATION DECOMPOSITION

BACK TO BASICS

► Two neurons can either be correlated or not, and this is measured by *mutual information*.

► However, with 3 or more neurons there are **qualitatively** different modes of interaction.

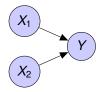


Redundancy

PARTIAL INFORMATION DECOMPOSITION

Two predictors X_1, X_2 and one target Y.

- Joint predictability: $I(X_1X_2; Y)$
- Marginal predictability: $I(X_1; Y), I(X_2; Y)$



However, sometimes:

$$\underbrace{I(X_1X_2; Y)}_{\text{"the whole"}} > \underbrace{I(X_1; Y) + I(X_2; Y)}_{\text{"the parts"}}$$

The Partial Information Decomposition (PID) postulate:

$$I(X_1X_2; Y) = \underbrace{I_{\partial}^{\{1\}\{2\}}}_{\text{redundancy}} + \underbrace{I_{\partial}^{\{1\}} + I_{\partial}^{\{2\}}}_{\text{unique info}} + \underbrace{I_{\partial}^{\{12\}}}_{\text{synergy}}$$

(Williams & Beer, 2010)

EXAMPLE: XOR LOGIC GATE

Perfect example of synergy: XOR.

X_1	<i>X</i> ₂	Y
0	0	0
0	1	1
1	0	1
1	1	0



Knowing one input tells you nothing:

$$I(X_1; Y) = I(X_2; Y) = 0$$

Knowing both inputs tells you everything:

$$I(X_1X_2; Y) = 1$$

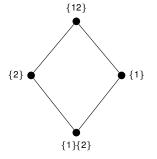
PARTIAL INFORMATION DECOMPOSITION

- Start with *intersection information*, I_{\cap}^{α} .
- ► Define a set of nodes A with a partial ordering ∠, such that

$$I^{\boldsymbol{lpha}}_{\cap} \leq I^{\boldsymbol{eta}}_{\cap} \qquad \text{iff} \qquad \boldsymbol{lpha} \preceq \boldsymbol{eta}$$

► Each I^α_∩ can be decomposed into partial information atoms:

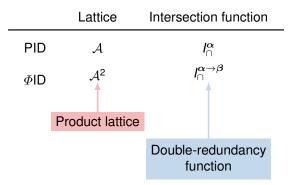
$$I^{oldsymbol{lpha}}_{\cap} = \sum_{oldsymbol{eta} \preceq oldsymbol{lpha}} I^{oldsymbol{eta}}_{\partial}$$



• This yields an *underdetermined* system of equations:

$$I(X_{1}; Y) = I_{\partial}^{\{1\}\{2\}} + I_{\partial}^{\{1\}}$$
$$I(X_{2}; Y) = I_{\partial}^{\{1\}\{2\}} + I_{\partial}^{\{2\}}$$
$$I(X_{1}X_{2}; Y) = I_{\partial}^{\{1\}\{2\}} + I_{\partial}^{\{1\}} + I_{\partial}^{\{2\}} + I_{\partial}^{\{12\}}$$

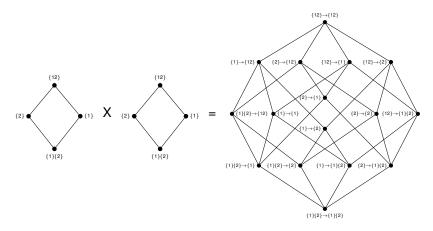
Key ingredients for an information decomposition:



INTEGRATED INFORMATION DECOMPOSITION Product lattice

Nodes of the **product lattice** are denoted as $\alpha \rightarrow \beta$ for $\alpha, \beta \in A$, and

 $\alpha
ightarrow eta \preceq lpha'
ightarrow eta' extrm{ iff } lpha \preceq lpha' extrm{ and } eta \preceq eta'.$



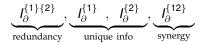
INTEGRATED INFORMATION DECOMPOSITION DOUBLE-REDUNDANCY

► **Compatibility axiom**: in the following cases a double-redundancy can be reduced to a PID redundancy or the mutual information:

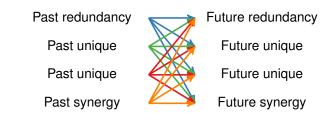
$$I_{\cap}^{\alpha \to \beta} = \begin{cases} \operatorname{Red}(\boldsymbol{X}^{\alpha_1}, \dots, \boldsymbol{X}^{\alpha_J}; \boldsymbol{Y}^{\beta_1}) & \text{if } K = 1, \\ \operatorname{Red}(\boldsymbol{Y}^{\beta_1}, \dots, \boldsymbol{Y}^{\beta_K}; \boldsymbol{X}^{\alpha_1}) & \text{if } J = 1, \\ I(\boldsymbol{X}^{\alpha_1}; \boldsymbol{Y}^{\beta_1}) & \text{if } J = K = 1. \end{cases}$$

► **15-for-free lemma**: Φ ID axioms provide unique values for the 16 atoms of the product lattice after one defines (i) a PID redundancy function **Red**(·), and (ii) an expression for $I_{\partial}^{\{1\}\{2\} \to \{1\}\{2\}}$.

► In PID there are 4 terms: redundancy, unique (2x), and synergy:



• In Φ ID, we have all combinations of past and future PID:



• In total, $4 \times 4 = 16$ terms.

Examples:

►
$$I_{\partial}^{\{1\}\{2\} \rightarrow \{1\}\{2\}}$$
: redundant stored information

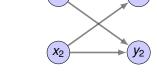
•
$$I_{\partial}^{\{1\} \to \{2\}}$$
: unique transferred information

•
$$I_{\partial}^{\{1\} \rightarrow \{1\} \{2\}}$$
: "duplicated" information

INTEGRATED INFORMATION DECOMPOSITION Examples

Active information storage:

AIS = $I(X_1; Y_1)$

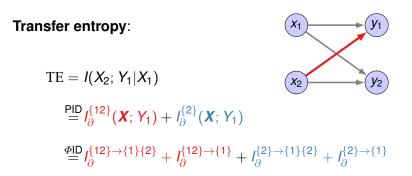


 X_1

$$\overset{\text{PID}}{=} I_{\partial}^{\{1\}\{2\}}(\boldsymbol{X}; Y_{1}) + I_{\partial}^{\{1\}}(\boldsymbol{X}; Y_{1})$$

$$\overset{\text{PID}}{=} I_{\partial}^{\{1\}\{2\} \to \{1\}\{2\}} + I_{\partial}^{\{1\}\{2\} \to \{1\}} + I_{\partial}^{\{1\} \to \{1\}\{2\}} + I_{\partial}^{\{1\} \to \{1\}}$$

INTEGRATED INFORMATION DECOMPOSITION Examples



INTEGRATED INFORMATION DECOMPOSITION Measures

What does a double-redundancy function look like?

Start from a PID redundancy, then make a multi-target extension.

► For example, take Barrett's (2015) *Minimum Mutual Information* redundancy function. In PID:

$$I_{\partial}^{\{1\}\{2\}}(\boldsymbol{X}; Y) = \min_{i} I(X_{i}; Y)$$

► And in *Φ*ID:

$$I_{\partial}^{\{1\}\{2\} \to \{1\}\{2\}}(\boldsymbol{X}; \boldsymbol{Y}) = \min_{i,j} I(X_i; Y_j)$$

INTEGRATED INFORMATION DECOMPOSITION Measures

An operational information decomposition via synergistic disclosure

Fernando ${\rm Rosas},^{1,\,2,\,3,\,*}$ Pedro Mediano,
4,* Borzoo Rassouli, 5 and Adam Barrett 6

- ► Define *synergistic channels* C(X) as channels that disclose information about the whole, but not about the parts.
- Define synergy as the information extractable from a synergistic channel. In PID:

$$I_{\partial}^{\{12\}}(\boldsymbol{X}; \boldsymbol{Y}) = \sup_{\substack{p_{V|\boldsymbol{X}} \in \mathcal{C}(\boldsymbol{X}):\\ V - \boldsymbol{X} - \boldsymbol{Y}}} I(V; \boldsymbol{Y}) \ .$$

► And in *Φ*ID, from two synergistic channels:

$$I_{\partial}^{\{12\} \to \{12\}}(\boldsymbol{X}; \boldsymbol{Y}) = \sup_{\substack{p_{V|\boldsymbol{X}} \in \mathcal{C}(\boldsymbol{X}), \\ p_{U|\boldsymbol{Y}} \in \mathcal{C}(\boldsymbol{Y}): \\ V - \boldsymbol{X} - \boldsymbol{Y} - I/ \\ l}} I(V; U) .$$

INTERIM SUMMARY

INTEGRATED INFORMATION DECOMPOSITION

- $\checkmark \Phi$ ID: extension of PID to dynamical systems, applicable to multivariate time series analysis.
- Straightforward generalisation of available software and PID measures.

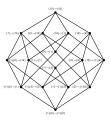
Past redundancy Past unique Past unique Past synergy

Future redundancy

Future unique

Future unique

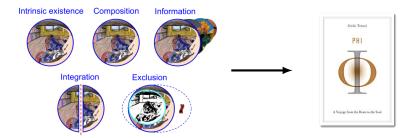
Future synergy



INTEGRATED INFORMATION THEORY

INTEGRATED INFORMATION THEORY

- Candidate theory of consciousness, very influential in the consciousness neuroscience community.
- Aims to develop a quantitative measure of consciousness, Φ .



(Tononi, 2015)

INTEGRATED INFORMATION THEORY

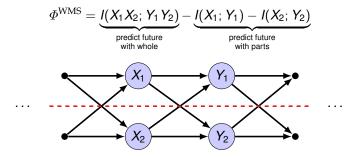
 Recent versions of IIT focus on deviations from independence or irreducibility.

BUT there are many ways in which a system can deviate from independence.

(Oizumi, Tsuchiya & Amari, 2016)

MEASURING INTEGRATED INFORMATION

Let's take one of the early IIT measures:



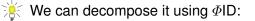
• $\Phi^{\text{WMS}} > 0$ for systems that are "more than the sum of its parts."

• $\Phi^{\text{WMS}} \leq 0$ for systems that are independent or strongly correlated.

(Barrett & Seth 2011) (Balduzzi & Tononi 2008)

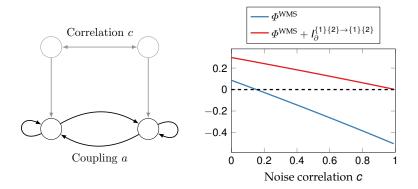
Given the formula for integrated information

$$\Phi^{\text{WMS}} = I(X_1X_2; Y_1Y_2) - I(X_1; Y_1) - I(X_2; Y_2) ,$$



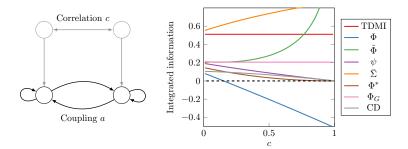
$$\begin{split} \varPhi^{\text{WMS}} &= -I_{\partial}^{\{1\}\{2\} \to \{1\}\{2\}} \\ &+ \text{Syn}(X_1, X_2; Y_1 Y_2) + I_{\partial}^{\{1\}\{2\} \to \{12\}} \\ &+ I_{\partial}^{\{1\} \to \{12\}} + I_{\partial}^{\{2\} \to \{12\}} \\ &+ I_{\partial}^{\{1\} \to \{2\}} + I_{\partial}^{\{2\} \to \{1\}} \end{split} \Big\} \text{Syn} \end{split}$$

$$\Phi^{\rm C} = \Phi^{\rm WMS} + I_{\partial}^{\{1\}\{2\} \to \{1\}\{2\}}$$



Many measures proposed, still no consensus.

Measure	Description	Reference
Φ	Predictive information lost after splitting the system	Balduzzi, 2008
$ ilde{\Phi}$	Uncertainty gained after splitting the system	Barrett, 2011
ψ	Synergistic information between parts of the system	Griffith, 2014
Φ^*	Decoding accuracy lost after splitting the system	Oizumi, 2015
Φ_{G}	Distance to system with disconnected parts	Oizumi, 2015



- Different measures capture different effects.
 - They are different not only in practice, but even in principle.

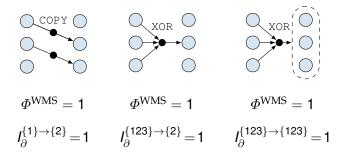
Measuring Integrated Information: Comparison of Candidate Measures in Theory and Simulation

Volume 21 · Issue 1 | January 2019

Φ ID atoms	Measures				
	Φ	CD	ψ	Φ_{G}	
$I_{\partial}^{\{1\}\{2\} \to \{1\}\{2\}}$	-	0	0	0	
$I_{\partial}^{\{1\}\{2\} \rightarrow \{i\}}$	0	0	0	0	
$I_{\partial}^{\{1\}\{2\} \rightarrow \{12\}}$	+	0	0	0	
$I_{\partial}^{\{i\} \to \{1\} \{2\}}$	0	+	0	+	
$I{i} \rightarrow {i}$	0	0	0	0	
$\{i\} \rightarrow \{i\}$	+	+	0	+	
$I_{2}^{\{1\} \to \{12\}}$	+	0	0	0	
$I_{\partial}^{\{12\} \rightarrow \{1\} \{2\}}$	+	+	+	+	
$I_{\partial}^{\{12\} \rightarrow \{i\}}$	+	+	+	+	
$I_{\partial}^{\{12\} \to \{1\} \{2\}} \\ I_{\partial}^{\{12\} \to \{i\}} \\ I_{\partial}^{\{12\} \to \{i\}} \\ I_{\partial}^{\{12\} \to \{12\}} $	+	0	+	0	

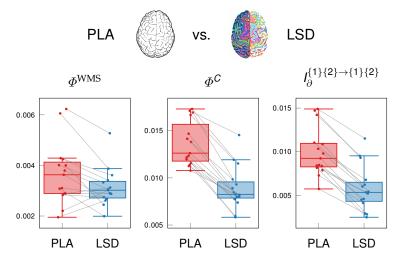
i Φ captures **fundamentally different** phenomena.

• These systems have the same Φ , but are qualitatively different:



WORK IN PROGRESS: PSYCHEDELIC STATE

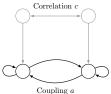
 Source-localised MEG data from subjects under the influence of psychedelic drugs.

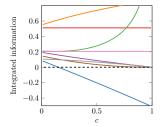


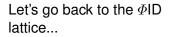
CONCLUSIONS

INTEGRATED INFORMATION THEORY

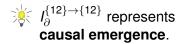
- $\checkmark \Phi$ ID shows why $\Phi^{\rm WMS}$ can be negative, analogous to a "dynamical co-information."
- $\checkmark \Phi$ measures a mix of different effects that can be disentangled with Φ ID.

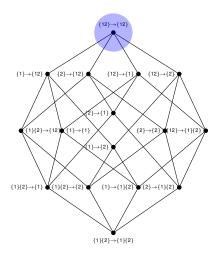




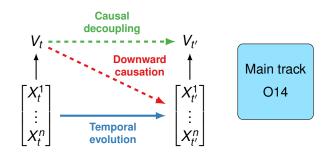


... and focus on the top node.





CAUSAL EMERGENCE Outline



- 1. Provide a formal definition of causal emergence.
- 2. Distinguish between two different *kinds* of emergence.
- 3. Propose a practical criterion and show it in action.

DEFINING EMERGENCE

Definition (causal emergence):

A supervenient feature $V_t = F(X_t)$ exhibits causal emergence if $Un(V_t; X_{t'}|X_t) > 0$.

Informally: A feature that says something about the future that individual micro elements don't.
 BUT we need to know V_t in advance.

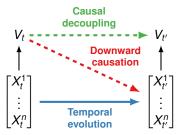
Solution: use more PID!

Result:

A system has causally emergent features if and only if $syn(X_t; X_{t'}) > 0$.

A TAXONOMY OF EMERGENCE

► We can further divide this into two *kinds* of emergence:



A TAXONOMY OF EMERGENCE

i We can decompose causal emergence using Φ ID!

$$\underbrace{\textbf{Syn}(\textbf{X}_{t}; \textbf{X}_{t'})}_{\text{total emergence}} = \underbrace{\mathcal{G}(\textbf{X}_{t})}_{\text{causal}} + \underbrace{\mathcal{D}(\textbf{X}_{t})}_{\text{downward}}$$

• Example; for n = 2 variables:

$$\mathbf{Syn}(\mathbf{X}_{t}; \mathbf{X}_{t'}) = \underbrace{I_{\partial}^{\{12\} \to \{12\}}_{\partial}}_{\text{synergy to}} + \underbrace{I_{\partial}^{\{12\} \to \{1\}\{2\}}_{\partial} + I_{\partial}^{\{12\} \to \{1\}}_{\partial} + I_{\partial}^{\{12\} \to \{2\}}}_{\text{synergy to}}$$

PRACTICAL TOOLS

 $\overset{}{\not k}$ A feature V_t is causally emergent if $\Psi > 0$.

$$\Psi_{t,t'}^{(k)}(V) \coloneqq I(V_t; V_{t'}) - \sum_{j=1}^n I(X_t^j; V_{t'})$$

Pros:

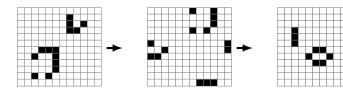
- Uses only standard mutual information. \checkmark
- Uses only pairwise marginals (no curse of dimensionality). \checkmark
- No false positives. \checkmark

Cons:

- × Needs a candidate feature V_t .
- X Double-counts redundancy (which reduces sensitivity).
- × Inconclusive if $\Psi < 0$.

RESULTS

* Canonical example of emergence: the Game of Life.



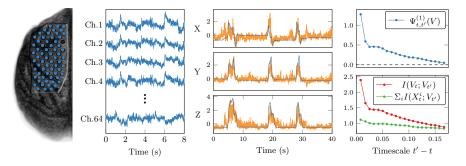
- Micro variable: cell states, $X_t \in \{0, 1\}^n$.
- ▶ Macro variable: particle type, $V_t \in \{\texttt{blinker}, \texttt{glider}, ... \}$.

$$\longrightarrow \Psi_{t,t'}(V) = 0.58$$
 bit

Results

Example of emergence: **neural activity** during motor control.

- Micro variable: ECoG channels, $X_t \in \mathbb{R}^{64}$.
- Macro variable: decoded hand motion, $V_t \in \mathbb{R}^3$.

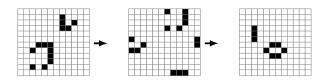


CONCLUSIONS

CAUSAL EMERGENCE

 Rigorous, quantitative theory of causal emergence with practical tools. Main track O14

? Initial steps towards testing emergence in neural data.



WRAP-UP

WRAP-UP

- $\checkmark \Phi$ ID: extension of PID to dynamical systems, applicable to multivariate time series analysis.
- $\checkmark \ \Phi {\rm ID}$ allows us to dissect and compare Φ measures, and to make new ones.
- ✓ We proposed a quantitative, rigorous theory of causal emergence.
- ? Many questions open: extensions, algorithms, applications, and more.

plogp@pm.me

Thank you for listening!

BACK-UP SLIDES

PID NOTATION

- ► We need to define a *coarse-grained* PID:
 - Un(X; Y|Z): unique information that X has about Y that no individual variable Zⁱ has.
 - Syn(X; Y): information about Y that no individual Xⁱ has (but X as a whole does).

INTRODUCTION

COARSE-GRAINED PID

