RECONCILING EMERGENCES

AN INFORMATION-THEORETIC APPROACH TO IDENTIFY CAUSAL EMERGENCE IN MULTIVARIATE DATA

Pedro A.M. Mediano plogp@pm.me

Imperial College London

ACKNOWLEDGEMENTS

6

Fernando Rosas

Daniel Bor

Adam Barrett

Thanks to:

- Anil Seth
- Henrik Jensen
- Robin Carhart-Harris

EMERGENCE: WHAT IT IS, AND WHY IT MATTERS

Informally: "the whole is more than the sum of its parts."

THEORIES OF EMERGENCE

- 1. Reductionism: There's only physics. Laplace's demon rocks.
- 2. Emergentism: Some things can't be explained by "microstates."
 - 2A *Strong*: true emergence possible in principle.
 - 2B *Weak*: true emergence only apparent in practice.

MINIMAL EXAMPLE

- Example system with two binary variables:
 - With probability γ , the future has the same parity as the past.
 - Otherwise, they have the opposite parity.

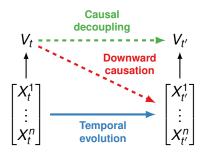
Time

► The dynamics are not visible in *any subset* of the system.

Many measures can't pick this up: $TE = MI = \Phi = 0$.

This is a minimal example of **causal emergence**.

CAUSAL EMERGENCE Outline



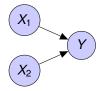
- 1. Provide a formal definition of causal emergence.
- 2. Distinguish between two different kinds of emergence.
- 3. Propose a practical criterion and show it in action.

INFORMATION DECOMPOSITION

PARTIAL INFORMATION DECOMPOSITION

Two predictors X_1, X_2 and one target Y.

- Joint predictability: $I(X_1X_2; Y)$
- Marginal predictability: $I(X_1; Y), I(X_2; Y)$



However, sometimes:

$$\underbrace{I(X_1X_2; Y)}_{\text{"the whole"}} > \underbrace{I(X_1; Y) + I(X_2; Y)}_{\text{"the parts"}}$$

The Partial Information Decomposition (PID) postulate:

$$I(X_1X_2; Y) = \underbrace{I_{\partial}^{\{1\}\{2\}}}_{\text{redundancy}} + \underbrace{I_{\partial}^{\{1\}} + I_{\partial}^{\{2\}}}_{\text{unique info}} + \underbrace{I_{\partial}^{\{12\}}}_{\text{synergy}}$$

(Williams & Beer, 2010)

Y

EXAMPLE: XOR LOGIC GATE

Perfect example of synergy: XOR.

	<i>X</i> ₂		
0	0 1	0	
0	1	1	$\begin{array}{c} X_1 \\ X_2 \end{array}$
1	0	1	- //
1	1	0	

Knowing one input tells you nothing:

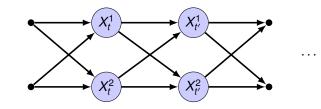
$$I(X_1; Y) = I(X_2; Y) = 0$$

Knowing both inputs tells you everything:

$$I(X_1X_2; Y) = 1$$

INFORMATION AND DYNAMICAL SYSTEMS

- ▶ PID decomposes information many sources have about one target.
- ► BUT we care about multivariate systems evolving *jointly* over time.



. . .

Problem: PID cannot deal with multiple targets!

INFORMATION DECOMPOSITION

Can we extend PID to multivariate time series?

Yes! With Integrated Infomation Decomposition, Φ ID.

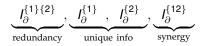
$$I(oldsymbol{X}_{t};oldsymbol{X}_{t'}) = \sum_{oldsymbol{lpha},oldsymbol{eta}\in\mathcal{A}} I_{\partial}^{oldsymbol{lpha} o oldsymbol{eta}}$$

Beyond integrated information: A taxonomy of information dynamics phenomena

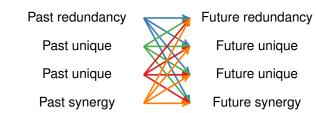
Pedro A.M. Mediano,¹ Fernando Rosas,^{2,3,4} Robin L. Carhart-Harris,² Anil K. Seth,⁵ and Adam B. Barrett^{5,6} ¹Department of Computing, Imperial College London, London SW7 2RF ²Center for Psychedelic Research, Department of Medicine, Imperial College London, London SW7 2DD ³Data Science Institute, Imperial College London, London SW7 2AZ ⁴Center for Complexity Science and Department of Mathematics, Imperial College London, London SW7 2AZ ⁵Sackler Center for Consciousness Science, Department of Informatics, University of Sussez, Brighton BN1 9RH ⁶The Data Intensive Science Centre, Department of Physics and Astronomy, University of Sussez, Brighton BN1 90H, UK

INTEGRATED INFORMATION DECOMPOSITION

► In PID there are 4 terms: redundancy, unique (2x), and synergy:



• In Φ ID, we have all combinations of past and future PID:



• In total, $4 \times 4 = 16$ terms.

INTEGRATED INFORMATION DECOMPOSITION

Examples:

►
$$I_{\partial}^{\{1\}\{2\} \rightarrow \{1\}\{2\}}$$
: redundant stored information

•
$$I_{\partial}^{\{1\} \to \{2\}}$$
: unique transferred information

•
$$I_{\partial}^{\{1\} \to \{1\} \{2\}}$$
: "duplicated" information

DEFINING EMERGENCE

PID NOTATION

- ► We need to define a *coarse-grained* PID:
 - $\mathbf{Un}(X \to Y | \mathbf{Z})$: unique information that X has about Y that no individual variable Z^i has.
 - Syn(X → Y): information about Y that no individual Xⁱ has (but X as a whole does).

DEFINING EMERGENCE

► Setting:

- System with *n* components $\boldsymbol{X}_t = (X_t^1, X_t^2, \dots, X_t^n)$
- Candidate emergent feature $V_t = F(X_t)$
- Informal definition: A feature V_t that says something about the future that individual micro elements don't.
- ► Formal definition:

Definition (causal emergence):

A supervenient feature $V_t = F(X_t)$ exhibits causal emergence if $\mathbf{Un}(V_t \rightarrow X_{t'}|X_t) > 0$.

DEFINING EMERGENCE

To compute $\operatorname{Un}(V_t \to X_{t'} | X_t)$ we need to know V_t in advance.

Solution: use more PID!

Result:

A system has causally emergent features if and only if $syn(X_t \rightarrow X_{t'}) > 0$.

► Synergy quantifies the *emergence capacity* of a system.

A TAXONOMY OF EMERGENCE

- Previous definition tells us whether there is emergence, but not what kind of emergence it is.
- ► We introduce two types of emergence:
 - **Downward causation**: macroscopic features affect individual elements.
 - Causal decoupling: macroscopic features affect other macroscopic features.

A TAXONOMY OF EMERGENCE

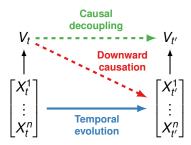
Formal definitions:

Downward causation:

$$extsf{Un}(V_t o X^i_{t'} | oldsymbol{X}_t) > 0$$

Causal decoupling:

$$\mathtt{Un}(\mathit{V}_t
ightarrow \mathit{V}_{t'} | \emph{X}_t, \emph{X}_{t'}) > 0$$



A TAXONOMY OF EMERGENCE

 $\mathcal{D}(\boldsymbol{X}_t)$ $\mathtt{Syn}(extbf{X}_t o extbf{X}_{t'}) = \mathcal{G}(extbf{X}_t)$ +

total emergence capacity

causal decoupling downward causation

SIMPLE EXAMPLES

• Example: as feature, take V_t as the parity of X_t .

$ extsf{Un}(V_t\! ightarrow\!oldsymbol{X}_{t'} oldsymbol{X}_t)\!=\!0$	$ extsf{Un}(V_t\! ightarrow\!oldsymbol{X}_{t'} oldsymbol{X}_t)\!=\!1$	$ extsf{Un}(V_t\! ightarrow\!oldsymbol{X}_{t'} oldsymbol{X}_t)\!=\!1$
$\mathcal{D}(\boldsymbol{X}_t) = \mathcal{G}(\boldsymbol{X}_t) = 0$	$\mathcal{D}(\boldsymbol{X}_t) = 1$	$\mathcal{G}(\pmb{X}_t) = 1$

X Not emergent

✓ Emergent

✓ Emergent

PRACTICAL TOOLS

 $\overset{*}{\not\models}$ A feature V_t is causally emergent if $\Psi > 0$.

$$\Psi_{t,t'}^{(k)}(V) \coloneqq I(V_t; V_{t'}) - \sum_{j=1}^n I(X_t^j; V_{t'})$$

Pros:

- Uses only standard mutual information. \checkmark
- Uses only pairwise marginals (no curse of dimensionality). \checkmark
- No false positives. \checkmark

Cons:

- × Needs a candidate feature V_t .
- X Double-counts redundancy (which reduces sensitivity).
- Inconclusive if $\Psi < 0$. X

INTERIM SUMMARY

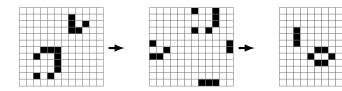
CAUSAL EMERGENCE

- ► So far, we have:
 - 1. Formulated a rigorous definition of causal emergence.
 - 2. Provided an intrinsic criterion of CE based on synergy.
 - 3. Decomposed emergence into \mathcal{D} and \mathcal{G} .
 - 4. Provided practical tools to test for emergence in data.

CASE STUDIES

RESULTS

* Canonical example of emergence: the Game of Life.



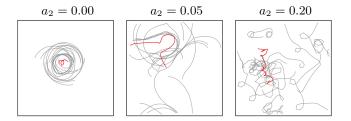
- Micro variable: cell states, $X_t \in \{0, 1\}^n$.
- ▶ Macro variable: particle type, $V_t \in \{\texttt{blinker}, \texttt{glider}, ... \}$.

$$\longrightarrow \Psi_{t,t'}(V) = 0.58$$
 bit

RESULTS

K Example of emergence: flocking behaviour.

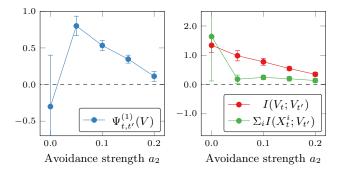
- Micro variable: bird position, $X_t \in \mathbb{R}^{2n}$.
- Macro variable: center of flock, $V_t \in \mathbb{R}^2$.



RESULTS

Example of emergence: flocking behaviour.

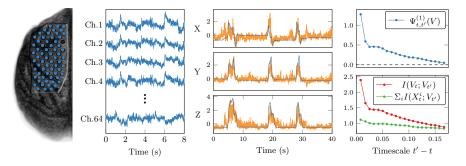
- **Micro variable**: bird position, $X_t \in \mathbb{R}^{2n}$.
- Macro variable: center of flock, $V_t \in \mathbb{R}^2$.



RESULTS

Example of emergence: **neural activity** during motor control.

- Micro variable: ECoG channels, $X_t \in \mathbb{R}^{64}$.
- Macro variable: decoded hand motion, $V_t \in \mathbb{R}^3$.



WRAP-UP

WRAP-UP

- \checkmark We proposed a quantitative, rigorous theory of causal emergence.
- ✓ Our theory agrees with intuition in paradigmatic examples of emergence (e.g. Game of Life).
- ✓ New family of information metrics to analyse neural (or other) data. → www.github.com/pmediano/ReconcilingEmergences

plogp@pm.me

Thank you for listening!