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EMERGENCE: WHAT IT IS, AND WHY IT MATTERS

Informally: “the whole is more than the sum of its parts.”
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THEORIES OF EMERGENCE

1. Reductionism: There’s only physics. Laplace’s demon rocks.

2. Emergentism: Some things can’t be explained by “microstates.”
2A Strong: true emergence possible in principle.
2B Weak: true emergence only apparent in practice.

999
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CAUSAL EMERGENCE
MINIMAL EXAMPLE

I Example system with two binary variables:
•With probability γ, the future has the same parity as the past.
• Otherwise, they have the opposite parity.

Time

I The dynamics are not visible in any subset of the system.

Many measures can’t pick this up: TE = MI = Φ = 0.

This is a minimal example of causal emergence.
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CAUSAL EMERGENCE
OUTLINE
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1. Provide a formal definition of causal emergence.
2. Distinguish between two different kinds of emergence.
3. Propose a practical criterion and show it in action.
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PARTIAL INFORMATION DECOMPOSITION

Two predictors X1,X2 and one target Y .

I Joint predictability: I(X1X2;Y )

I Marginal predictability: I(X1;Y ), I(X2;Y )

X1

X2

Y

However, sometimes:

I(X1X2;Y )︸ ︷︷ ︸
“the whole“

> I(X1;Y ) + I(X2;Y )︸ ︷︷ ︸
“the parts“

The Partial Information Decomposition (PID) postulate:

I(X1X2;Y ) = I{1}{2}
∂︸ ︷︷ ︸

redundancy

+ I{1}
∂ + I{2}

∂︸ ︷︷ ︸
unique info

+ I{12}
∂︸ ︷︷ ︸

synergy
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EXAMPLE: XOR LOGIC GATE

Perfect example of synergy: XOR.

X1 X2 Y

0 0 0
0 1 1
1 0 1
1 1 0

X1
X2

Y

I Knowing one input tells you nothing:

I(X1;Y ) = I(X2;Y ) = 0

I Knowing both inputs tells you everything:

I(X1X2;Y ) = 1
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INFORMATION AND DYNAMICAL SYSTEMS

I PID decomposes information many sources have about one target.

I BUT we care about multivariate systems evolving jointly over time.

X 1
t

X 2
t

X 1
t′

X 2
t′

. . . . . .

Problem: PID cannot deal with multiple targets!
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INFORMATION DECOMPOSITION

Can we extend PID to multivariate time series?

Yes! With Integrated Infomation Decomposition, ΦID.

I(Xt ;Xt ′) =
∑

α,β∈A
Iα→β
∂
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INTEGRATED INFORMATION DECOMPOSITION

I In PID there are 4 terms: redundancy, unique (2x), and synergy:

I{1}{2}
∂︸ ︷︷ ︸

redundancy

, I{1}
∂ , I{2}

∂︸ ︷︷ ︸
unique info

, I{12}
∂︸ ︷︷ ︸

synergy

I In ΦID, we have all combinations of past and future PID:

Past redundancy

Past unique

Past unique

Past synergy

Future redundancy

Future unique

Future unique

Future synergy

I In total, 4× 4 = 16 terms.
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INTEGRATED INFORMATION DECOMPOSITION

Examples:

I I{1}{2}→{1}{2}
∂ : redundant stored information

I I{1}→{2}
∂ : unique transferred information

I I{1}→{1}{2}
∂ : “duplicated” information

I ...
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PID NOTATION

I We need to define a coarse-grained PID:

• Un(X → Y |Z ): unique information that X has about Y that
no individual variable Z i has.

• Syn(X → Y ): information about Y that no individual X i

has (but X as a whole does).
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DEFINING EMERGENCE

I Setting:

• System with n components Xt = (X 1
t ,X

2
t , . . . ,X

n
t )

• Candidate emergent feature Vt = F (Xt)

I Informal definition: A feature Vt that says something about the
future that individual micro elements don’t.

I Formal definition:

Definition (causal emergence):

A supervenient feature Vt = F (Xt) exhibits
causal emergence if Un(Vt → Xt′ |Xt) > 0.
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DEFINING EMERGENCE

To compute Un(Vt → Xt ′ |Xt) we need to know Vt in
advance.

Solution: use more PID!

Result:

A system has causally emergent features
if and only if Syn(Xt → Xt ′) > 0.

I Synergy quantifies the emergence capacity of a system.
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A TAXONOMY OF EMERGENCE

I Previous definition tells us whether there is emergence, but not
what kind of emergence it is.

I We introduce two types of emergence:

• Downward causation: macroscopic features affect
individual elements.

• Causal decoupling: macroscopic features affect other
macroscopic features.
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A TAXONOMY OF EMERGENCE

I Formal definitions:

Downward causation:

Un(Vt → X i
t ′ |Xt) > 0

Causal decoupling:

Un(Vt → Vt ′ |Xt ,Xt ′) > 0
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A TAXONOMY OF EMERGENCE

We can decompose causal emergence using ΦID:

Syn(Xt → Xt ′)︸ ︷︷ ︸
total emergence

capacity

= G(Xt)︸ ︷︷ ︸
causal

decoupling

+ D(Xt)︸ ︷︷ ︸
downward
causation
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SIMPLE EXAMPLES

I Example: as feature, take Vt as the parity of Xt .

COPY
XOR XOR

Un(Vt→Xt ′ |Xt)=0 Un(Vt→Xt ′ |Xt)=1 Un(Vt→Xt ′ |Xt)=1

D(Xt) = G(Xt) = 0 D(Xt) = 1 G(Xt) = 1

7 Not emergent X Emergent X Emergent
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PRACTICAL TOOLS

A feature Vt is causally emergent if Ψ > 0.

Ψ
(k)
t ,t ′ (V ) := I(Vt ;Vt ′)−

n∑
j=1

I(X j
t ;Vt ′)

Pros:

X Uses only standard mutual information.

X Uses only pairwise marginals (no curse of dimensionality).

X No false positives.

Cons:

7 Needs a candidate feature Vt .

7 Double-counts redundancy (which reduces sensitivity).

7 Inconclusive if Ψ ≤ 0.
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INTERIM SUMMARY
CAUSAL EMERGENCE

I So far, we have:

1. Formulated a rigorous definition of causal emergence.

2. Provided an intrinsic criterion of CE based on synergy.

3. Decomposed emergence into D and G.

4. Provided practical tools to test for emergence in data.
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CAUSAL EMERGENCE
RESULTS

Canonical example of emergence: the Game of Life.

I Micro variable: cell states, Xt ∈ {0,1}n.

I Macro variable: particle type, Vt ∈ {blinker, glider, ... }.

−→ Ψt,t′(V ) = 0.58 bit
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CAUSAL EMERGENCE
RESULTS

Example of emergence: flocking behaviour.
I Micro variable: bird position, Xt ∈ R2n.

I Macro variable: center of flock, Vt ∈ R2.0.0 0.1 0.2
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CAUSAL EMERGENCE
RESULTS

Example of emergence: flocking behaviour.
I Micro variable: bird position, Xt ∈ R2n.

I Macro variable: center of flock, Vt ∈ R2.
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CAUSAL EMERGENCE
RESULTS

Example of emergence: neural activity during motor control.

I Micro variable: ECoG channels, Xt ∈ R64.

I Macro variable: decoded hand motion, Vt ∈ R3.
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WRAP-UP

X We proposed a quantitative, rigorous theory of causal emergence.

X Our theory agrees with intuition in paradigmatic examples of
emergence (e.g. Game of Life).

X New family of information metrics to analyse neural (or other) data.
→ www.github.com/pmediano/ReconcilingEmergences

plogp@pm.me Thank you for listening!
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