INFORMATION THEORY TOOLS

FOR

COGNITIVE NEUROSCIENCE

Pedro A.M. Mediano plogp@pm.me

Imperial College London

ACKNOWLEDGEMENTS

Fernando Rosas

Daniel Bor

Andrea Luppi

Thanks to:

- Adam Barrett
- Anil Seth
- Emmanuel Stamatakis
- Tristan Bekinschtein

INTRODUCTION

MOTIVATION

- **Defining** and **measuring** consciousness.
- Inspiration: thermodynamics!
- Challenge: inventing temperature and thermometers at the same time.

MOTIVATION

Goal: theoretically- and empirically-informed revision of our tools to measure consciousness and cognition.

- What are our tools actually measuring?
- Does that match what we actually want to measure?
- ► Can we improve them?

ENTROPY AND INFORMATION

Information (entropy) in a signal can be split:

THIS TALK

Part I

Entropy, Lempel-Ziv complexity, and entropy-frequency effects

Part II

Information decomposition, synergy, and integrated information

ENTROPY AND COMPLEXITY

ENTROPY RATE

Measure of unpredictability in time series data.

 $H(X_t|\mathbf{X}_{-\infty}^{t-1})$

K Simple estimator of entropy rate: Lempel-Ziv complexity.

LZ represents complexity as diversity.

LEMPEL-ZIV COMPLEXITY

► **PCI**: EEG LZ after transcranial magnetic stimulation (TMS).

(Casali et al., 2013)

LEMPEL-ZIV COMPLEXITY

(Mediano et al., 2020)

PROBLEMS WITH LZ

Two important limitations of LZ:

- 1. Unclear relation between LZ and power spectrum.
- 2. LZ has little spectral and temporal resolution.

LZ DIFFERENCE DECOMPOSITION

Decomposition of LZ difference between two conditions:

Results comparing rest vs. a stop/no-go task:

INSTANTANEOUS COMPLEXITY

- So far, all examples rely on spontaneous activity LZ as a "state" measure.
- ► Target application: mismatch negativity in the primate brain.

⁽Komatsu et al., 2015)

INSTANTANEOUS COMPLEXITY

- New estimator based on state-space models.
- Compute prediction at each timestep to get an "instantaneous LZ."
- In an auditory oddball task, entropy changes precede ERP by 20 ms.

INFORMATION DECOMPOSITION

MUTUAL INFORMATION

General measure of (in)dependence between two variables.

"Generalised" version of linear correlation coefficient.

I(X; Y)

Natural application: pairwise functional connectivity matrix.

BEYOND FUNCTIONAL CONNECTIVITY

- **BUT** the brain has many more than two interacting parts.
 - \rightarrow Things are more complicated than they seem!

"Functional connectivity" is all zeros!

PARTIAL INFORMATION DECOMPOSITION

Can we decompose information shared between many variables?

Enter Partial Information Decomposition (PID).

In PID, mutual information is split into:

- Redundancy
- Unique information
- Synergy

Synergy: information that is in the whole, but not in the parts.

(Williams & Beer, 2010)

SYNERGY AND REDUNDANCY IN FMRI

Synergy is associated with high-level cognitive function.

(Luppi et al., 2020a)

INTEGRATED INFORMATION THEORY

► Integrated information measures (Φ) compare a system with a "disconnected" version of itself.

With PID we can "zoom in" into the constituents of Φ :

 $\Phi =$ Synergy + Transfer - Redundancy

► We can formulate a 'revised Φ ': Φ^R = Synergy + Transfer

(Mediano et al., 2019)

SYNERGY AND CONSCIOUSNESS

- Φ^R , but not normal Φ , decreases in the DMN consistently under propofol anaesthesia and DoC.
- ► Bonus: new statistical test for composite hypotheses across datasets.

WRAP-UP

WRAP-UP

- ✓ New tools for LZ analysis: more efficient, versatile, and nuanced.
- ✓ PID reveals "what kind" of information is being processed, links synergy with high-level cognition.
- ✓ New insights on IIT and causal emergence.
- ? Many questions open: extensions, algorithms, applications, and more.

plogp@pm.me

Thank you for listening!

REFERENCES

- Mediano et al. (2020). Effects of external stimulation on psychedelic state neurodynamics.
- Mediano et al. (2020). Decomposing spectral and phasic differences in non-linear features between datasets.
- Mediano et al. (2019). Beyond integrated information: A taxonomy of information dynamics phenomena.
- Rosas et al. (2020). Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data.
- ► Luppi et al. (2020). A synergistic core for human brain evolution and cognition.